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HANGING-CHAIN IMPACT DAMPERS: A SIMPLE mTHOD 

FOR DAMPING TALL FLEXIBLE STRUCTURES 

By W i l m e r  H. Reed I11 
NASA Langley Research Center 

ABSTRACT 

This paper investigates a simple concept of achieving damping i n  order t o  

suppress wind-induced oscillations of a class of erected structures such as 

antennas, stacks, and towers. It i s  shown that a chain, covered with a rubber 

sleeve and suspended with freedom t o  impact against a ver t ical  channel, i s  

capable of absorbing significant energy associated with transverse oscillations 

of the channel. 

t e r i s t i c s  of such a damper are determined experimentally i n  terms of mechanical 

impedance measurements. 

agreement with a simplified theory which i s  derived on the basis of a single- 

particle impact damper. 

launch vehicle increased the damping of the structure by a factor of up t o  3 .  

Results of t h i s  generalized research study indicate that the performance of 

hanging-chain impact dampers can be predicted with accuracy suitable for  design 

purposes . 

The effects of various parameters on the performance charac- 

The experimental data are found t o  be i n  reasonable 

Chain dampers installed on a 70-foot-tall erected 



The author i s  indebted t o  M r .  W i l l i a m  G. Johnson, Jr., who conducted the 

damper impedance tes t s ,  and t o  Messrs. Jerome T. Foughner and Rodney L. Duncan 

for  the i r  valuable assistance i n  performing the damper t e s t s  on the Jupiter 

launch vehicle. 



KANGING-CHAIN IMPACT DAMPERS: A SIMPU METHOD 

FOR DAMPING TALL FLEXIBLE STRUCTURES 

By Wilmer H. Reed III* 
NASA Langley Research Center 

INTRODUCTION 

Wind-excited oscil lations of t a l l  f lexible structures can be significantly 

reduced by the addition of damping t o  the structure. 

a simple method of increasing the damping of such structures. 

cept involves a chain that hangs i n  a vertical  channel. 

provided such that when the channel i s  attached t o  a vibrating structure the 

chain periodically impacts against the  w a l l s  of the channel. 

impacts provide the mechanism for  dissipating vibration energy of the struc- 

ture, the hanging-chain damper may be identified a s  belonging t o  a class of 

impact or  acceleration dampers. 

This paper investigates 

The basic con- 

A clearance gap i s  

Since these 

The first -known systematic research on impact dampers w a s  conducted i n  

1940 by Arthur A. Regier at NACA/NASA Langley. 

unpublished, and a subsequent study by Lieber and Jensen (1945) treated the 

free  vibration of a l ight ly  damped structure t o  which i s  attached a mass 

par t ic le  i n  a container such that the par t ic le  i s  f ree  t o  move relative t o  

the container. These and more recent studies of impact dampers on idealized 

single-degree-of-freedom systems (Arnold (1957), Warburton (1957), Masri (1967) , 
and Egle (1967)), have led t o  a reasonably good understanding of the  phenomenon 

involved; however, at present few practical  applications of impact dampers can 

be cited. 

Regier's study, which w a s  

*Assistant Head, Aeroelasticity Branch, Dynamic Loads Division. 
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A recent practical problem, whose solution, incidentally, led t o  the 

present study of hanging-chain dampers, i s  reported by Farmer and Reed (1966), 

and Reed and Duncan (1967). 

cylindrical masts ut i l ized i n  U.S. N a v y  antenna systems. 

i s  a 24-foot-tall cantilevered structure, the upper two-thirds of which i s  a 

6-inch-diameter aluminum pipe. 

winds are believed t o  be the cause of crack damage often observed i n  a load- 

carrying fiber-glass insulator at  the base of the m a s t .  

found t o  be a small cluster of chains which w e r e  covered with plast ic  tubing 

and hung inside the t i p  of the mast. 

1 2  pounds, was t o  increase the damping of the 26O-pound antenna by a factor of 

about 20. Wind-tunnel t e s t s  of a full-scale antenna verified the effectiveness 

of the damper i n  bringing about significant reductions i n  vibration response. 

This problem involved wind-excited oscillations of 

The antenna element 

Oscillations of the mast i n  light t o  moderate 

A simple "fix" w a s  

The effect  of the chains, which weighed 

The primary focus of t h i s  paper i s  on a generalized research investigation 

of chain impact dampers. By means of mechanical impedance measurements, the 

effects of various chain-damper parameters such as clearance gap, chain length 

and weight, amplitude and frequency of vibration are evaluated. These experi- 

mental data are then compared with predictions of a simplified theory. 

Finally, an experiment involving the installation of chain dampers on a 

70-foot-tall launch vehicle i s  described t o  i l l u s t r a t e  the performance poten- 

t i a l s  of chain dampers on relatively large structures such as  smokestacks and 

tower s . 

SYMBOLS 

'e 

cC 

2 

equivalent Viscous damping coefficient of damper 

c r i t i ca l  damping, % 



d t o t a l  clearance gap between chain and container 

1 

m 

3 2  

me 

M 

T 

X 

Xst 

Y 

' S  ,'D 

6 

ct 

cp 

a, 

coefficient of res t i tut ion 

excitation force 

fundamental component of F(t) 

gravitational const ant 

structural  spring constant 

chain length 

chain mass per uni t  length 

m a s s  of f ree  particle i n  impact damper 

effective mass of damper 

lumped structural  mass 

number of impacts per cycle 

r ea l  and imaginary parts of fundamental components of F ( t )  

time 

integration t i m e  used i n  impedance measurements 

absolute displacement of damper mount 

static deflection, Fo/k 

absolute displacement of chain or free m a s s  par t ic le  

mechanical impedance of structure and damper, respectively 

logarithmic decrement 

mass ra t io ,  2m/M 

phase angle defining t i m e  of impact 

circular frequency 

fundamental frequency of hanging chain, 1.20 

undamped natural frequency, 
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Subscript s : 

- ,f 
c r i t  

conditions immediately before and immediately after impact 

c r i t i ca l  gap ra t io  or frequency r a t io  above which steady-state 

impacts do not occur 

OPt optimum damping 

IUaX maximum 

MECHANICAL IMPEDANCE OF IMPACT DAMPEZS 

Configurations Studi ed 

The damper configuration chosen for  study i n  t h i s  paper i s  shown schemahi- 

cally i n  figure 1. Parameters t o  be varied include the chain length 2 ,  the  

chain mass per unit length m, the gap distance d, and the amplitude and fre- 

quency of sinusoidal vibration. 

1/16-inch-thick rubber sleeve which served t o  greatly reduce impact noises. 

For a l l  t e s t s  the chains were covered with a 

Basic Impedance Concepts 

In  previous investigations the performance of impact dampers has been 

evaluated usually i n  terms of the effect on response of a single-degree-of- 

freedom mass-spring system. 

mental importance, a somewhat more general approach based on mechanical impedance 

concepts w i l l  be followed i n  the  present study. 

ut i l ized t o  predict the effect of attaching a damper t o  an arbitrary structure 

whose impedance at  the damper attachment point i s  known. 

Although the  mass-spring system i s  one of funda- 

This alternate approach can be 

To i l l u s t r a t e  impedance methods, figure 2 shows a chain damper mounted on 

a single-degree-of-freedom mass-spring oscil lator.  

l a t e  the damper container horizontally i s  expressed, for  convenience, i n  terms 

The force required t o  oscil- 
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of an equivalent viscous damping coefficient 

The t o t a l  force required t o  drive the system 

+ 
s t rue ture F ( t )  = (~ + kx) 

ce 

with 

(I..: 

and an effective mass s. 
damper attached is  then 

+ ce2 )damper 

For sinusoidal motions x( t )  = +e* and F ( t )  = Foe*, equation (1) becomes 

where 

are the mechanical impedances of the structure and damper.* The damper imped- 

ance ZD(x,a) is expressed as a function of x as w e l l  as u) t o  indicate 

that, as w i l l  be shown later ,  the coefficients ce and depend on the 

amplitude of motion. 

Equation (2) can be reduced t o  a convenient nondimensional form as follows: 

It should be noted that  the force required t o  drive the damper i n  simple * 

harmonic motion is  not sinusoidal. It is  instead a series of alternating 

impulses which occur twice per cycle when the chain impacts against the con- 

tainer w a l l .  However, when F( t )  is  expressed as a Fourier Series it can be 

shown that the energy dissipated per oscillation cycle is a function only of the 

fundamental component of the series. The term Fo in  equation (2)  is therefore 

taken t o  be the fundamental component of F( t ) . 
5 



where 

- Fo 
Xst - - 

m2 

The nondimensional damper parameters t o  be determined are me - and -. ce 
mZ m2w 

Test Apparatus and Data Reduction 

Figure 3 shows a photograph and schematic diagram of the t e s t  apparatus 

The damper i s  mounted on a l igh t  with which damper parameters are measured. 

platform which is constrained, through flexures, t o  move horizontally. The 

platform is driven sinusoidally by a variable-speed electr ic  motor connected by 

linkages t o  a high iner t ia  flywheel. The driving force F ( t )  i s  measured 

with a strain-gage load c e l l  whose e lec t r ica l  output i s  amplified and fed t o  a 

sin-cos potentiometer. 

the flywheel drive shaft, i t s  output voltages are proportional t o  

and F( t ) s in  cu t .  

grated over a large number of cycles t o  obtain the fundamental components of 

F ( t )  which are i n  phase and 90' out of phase with the displacement. 

F ( t )  assumed t o  be of the form IX@ + ce? and with x = xo cos cut it can be 

shown tha t  these integrations produce 

Since the potentiometer i s  mechanically connected t o  

F(t)cos cut 

By use of analog computer components these products are inte- 

With 

R(w) = -kT F(t)  cos Ort dt  = - $ meX0&I! 
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where the integration t i m e  T 

(In these tests 

Actually, the quantities and C e  are determined from differences between 

the integrator outputs with and without the chain i n  the container. Thus, the 

container and osci l la tor  platform masses are not included i n  me, and, simi- 

lar ly ,  the small residual damping i n  the platform support system i s  removed 

from C e .  

is  large relative t o  the period of oscillation. 

T was  20 seconds and the period varied from 2.0 t o  0.2 sec. 

RESULTS AND DISCUSSION 

Effect of Various Parameters on Chain Damper Impedance 

ZmU Zm 
Frequenc_y.- A typical plot  of damper parameters and %2 as a func- 

The frequency scale has been nor- t ion of frequency i s  presented i n  figure 4. 

malized with respect to. fundamental natural frequency of a hanging chain, which 

i s  

q = 1.200 

Associated with these curves are three distinct regimes of chain vibration 

which were visually observed; these regimes are identified i n  figure 4 as I, 11, 

and 111. In region I, which extends from = 1 t o  approximately a y = 3 ,  

only a fraction of the chain length impacts against the container w a l l .  
I 

Impact 

first occurs at the lower end of the chain when the forcing frequency coincides 

with fundamental chain frequency. With further increase i n  frequency, impact 

occurs over an increasingly greater portion of the chain u n t i l  f inal ly  the 

chain impacts over vir tual ly  i t s  entire length. 

and i s  characterized by a tendency for  the impedance curves t o  level  off at a 

constant value. Depending on the gap distance d (or  more particularly the 

Region I1 begins at t h i s  point 
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nondimensional r a t io  

one of two patterns: 

continues t o  impact along i t s  full length <or a l l  higher frequencies and the 

impedance i s  essentially- independent of frequency. 

i n  figure 4 by curves fo r  

4.0, however, there i s  a particular frequency at  which chain vibration motions 

the  chain impacts abruptly change. 

twice per cycle against the container w a l l .  

d/xo = 4.78, there are no impacts 
( Y 9 ) c r i t  
or irregular impacts and consequently the damping parameter abruptly drops t o  a 

low value. 

d/xo) the chain motion i n  Region I1 is found t o  follow 

If the gap ra t io  is less than a c r i t i c a l  value, the chain 

This characteristic is shown 

d/xo = 1.72. If the  gap r a t io  i s  greater than about 

(&/y)cr i  t 
Below this c r i t i c a l  frequency 

For frequencies above the 

, Region I11 shown i n  figure 4 for 

This low residual damping i s  believed t o  be associated with the 

f r ic t ion  forces i n  the vibrating chain. 

component me/mZ 

reactance has changed from an inertia-type force t o  a spring-type force. 

Also note that the in-phase impedance 

changes sign a t  the c r i t i c a l  frequency indicating tha t  the 

Further insight in to  th i s  sudden change i n  system behavior with small f re -  

quency changes may be gained by examining the effects of another basic system 

parameter which i s  the gap-distance r a t io  d/xo. 

Gap.- Before experimental data are presented which show the effects 

of gap distance on damper impedance, it is helprul t o  first look a t  some theo- 

r e t i ca l  predlctions. 

quency is  greater than about 3 t i m e s  the fundamental natural chain vibration 

frequency, impact occurs along the f u l l  chain length and damping i s  essentially 

independent of frequency. 

as a classical  impact damper i n  which the  damper mass i s  considered t o  be a 

single particle.  In the Appendix of th i s  paper theoretical  expressions are  

derived f o r  the impedance of a single-particle impact damper of the type 

As was previously noted i n  figure 4 when the driving fre- 

Thus, i n  Region I1 the  chain damper appears t o  behave 

8 



t reated by previously menticmedinvestigators. 

assumed t o  ac t  as a ver t ica l  member which i s  free t o  translate la te ra l ly  through 

I n  t h i s  analysis the chain is 

a distance kd/2 relat ive t o  the container. 

neglected and the  par t ic le  mass i s  assumed t o  be 

chain. 

obtajlned i n  the Appendix 

Gravity restoring forces have been 

mZ, the  t o t a l  mass of the 

With the assumption of t w o  impacts per cycle the following equations are 

2m 

s in  cp - 2 cos cp 
XO 

( 5 )  

where e 

cp 

is  the coefficient of res t i tut ion between the mass and container* and 

i s  a phase angle which specifies the container displacement a t  the t i m e  of 

impact. 

The impedance parameters defined by these equations are plotted i n  f ig-  

ure 5 as a function d/xo for  specified values of e. An important fact  t o  

note i n  figure 5 is  tha t  for constant e the impedance parameters can be 

either of two possible values when d/xo 2 2.0. 

shown i n  figure 6 it appears, however, that only the upper portion of the curves 

From the experimental data 

represents a stable solution. 

tha t ,  when d/xo 

occur. 

is similarly a c r i t i c a l  gap r a t io  boundary separating a region of stable 

Furthermore, both theory and experiment indicate 

exceeds a certain c r i t i c a l  value, impacts w i l l  no longer 

Thus, associated with the c r i t i c a l  frequency mentioned previously, there 

* These equations apply when e > 0; when e = 0 alternate equations given 

by ( A l g )  i n  Appendix apply. 
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steady-state impacts (Region 11) from one of no impacts or .intermittent impacts 

(Region 111). 

Restitution coefficient e. - The experimental curves SI own i n  figure 6 are  

for  different frequency ratios.  These plots are  t o  be C o ~ ~ i ~ Z e d  with theoretical 

curves for which the e values were se l ec t ed to  best f i t  .;?le experimental data. 

The values of e fo r  the chains used i n  these experiments, although not accu- 

ra te ly  known, are believed. t o  f a l l  i n  the range shown i n  figure 6. 

figure tha t  the lowest frequency ra t io  (a/’% = 3.68) is asso-iated with the 

highest coefficient of res t i tut ion (e = 0.40) and. vice versa. 

reasoned tha t  i f  

Note i n  the 

Thus, it can be 

e does i n  fact  f a l l  off w.’.th increasing ;’requency i n  the 

manner shown i n  figure 6, then the c r i t i c a l  f-equency i l lustrated i n  figure 4 

f o r  the d/xo = 4.78 curve can be interpretec. as being the :’requency associated 

with a p a r t i c d a r  e value for  which (d/xo)crit = 4.78. 

Although f’urther study i s  required t o  e q l a i n  more f i l l y  the mechanism 

which would cause e to vary with frequency, :he following conjecture i s  

offered. For a given gap distance, impact fo:.les on the chain increase w i t h  

increasing frequency. Stat ic  f r ic t ion  betwe!! adjoining chain l inks may be 

such that  the chain acts essentially as a si lgle body a t  l o w  frequencies; a t  

higher frequencies, where impact forces exceed the  f r ic t ion  breakout forces, a 

portion of the energy formerly associatedwth rebound energy i s  now dissipated 

by f r ic t ion  between chain links, thus leadiis: t o  a reduced e value. 

Impact s tab i l i ty  boundaries.- A s  indicsied i n  the Appendix, regular two- 

impact-per-cycle motion of the system i s  pos:ible only fo r  a particular range 

of e and d/xo values. Beyond the boundmles of t h i s  range, impacts either 

do not occur or there are more than two impac :i per cycle. These boundaries 

are presented i n  figure 7. The curve on the xight defines the upper l i m i t  

10 



of d/xo fo r  which there are two impacts per cycle. The (d/xo)crit value 

discussed i n  the previous figure would correspond t o  points on t h i s  boundary. 

The curve on the l e f t  defines the lower l i m i t  of 

cycle motions. 

nates the family of curves as  d/xo approaches zero. For d/xo values below 

this lower l i m i t  the rebound velocity of the mass relat ive t o  the container i s  

such tha t  after an i n i t i a l  impact against one side of the container the container 

overtakes the mass causing a second impact. 

N >  2 

essarily become ineffective as it does when the right-hand boundary is crossed 

i n  going from regions N = 2 t o  N = 0. 

d/xo fo r  two-impact-per- 

This boun&ary also appears i n  figure 5 as the l ine  which termi- 

Although i n  this region where 

the assumptions of the analysis no longer hold, the damper does not nec- 

To m t h e r  define impact s t ab i l i t y  boundaries, data obtained on a l l  chain- 

damper configurations of t h i s  study are summarized i n  figure 8. 

shows the experimentally determined relationship between the parameters 

This figure 

(d/xo)crit and . ((O/(ll)crit which were discussed previously i n  figures 4 

and 6. Also indicated by a second ordinate i n  figure 8 are the e values 

associated with the theoretical  s tab i l i ty  boundary between N = 2 and N = 0 

i n  figure 7. 

boundary appears t o  asymptotically approach the minimum value predictedby 

Note tha t  with increasing frequency the experimental s t ab i l i t y  

theory which is  (d/xo)crit = 3.75 with e = 0. (See f ig .  7 and Appendix.) 

Optimum Damper Performance 

From the family of damping curves plotted i n  figure 5 ,  it i s  evident that; 

fo r  a given d/xo there i s  a particular e f o r  which damping is  maximum, and 

similarly f o r  a given e there i s  an optimum value of d/xo. A s  indicated by 

equation (4) maximum damping occurs when cp = n/2. The impedance parameters f o r  

11 



optimum damping are  therefore 

The corresponding optimum gap 

J = o  

r a t io  i s  from equation (6) 

l + e  Nopt = a(=) 

Thus, when equations (7) and (8) are combined the following equation for the 

loci of mswcLmum damping as  a function of gap distance is  obtained 

An interesting feature of this  equation 

upon the coefficient of res t i tut ion e. 

parameter in  the present study of chain 

is  tha t  it does not depend explicit ly 

Since e is essentially an undetermined 

dampers, equation ( 9 )  suggests another 

summary-type presentation of the experimental data. 

of a l l  ( ~ e / z ~ ) o p t  values obtained during the t e s t s  are  plotted i n  figure 9 

against the corresponding value of (d/xo) . 

Accordingly, a compilation 

The data points i n  figwe 9 encompass not only variations i n  the length and 

running mass of the chain, as indicated by the symbols, but also independent 

variations of d and xo. In  addition, the points cover frequency r a t io  varia- 

t ions from approximaely LD y = 2.0 As noted previously, the 

lower frequencies a re  associated with the higher w i n g  values and vice versa. 

It may be concluded from experimental data presented i n  this and preceding 

t o  u/% = 7.0. I 

figures tha t  the performance of chain dampers can be predicted with reasonable 
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accuracy by theory for  a single mass impact damper providing an account i s  taken 

of the inferred variation of e with frequency ra t io .  

APPLICATION OF FESULTS FOR SINGLE-DEGmE-OF-FREZDOM SYSTEM 

Having evaluated the mechanical impedance characteristics of chain dampers 

l e t  us next attempt t o  interpret  these results i n  terms of forced response of a 

single-degree-of-freedom mass-spring osci l la tor  with a chain damper attached. 

The particular quantity of interest  will be the amplitude of maximum response. 

With reference t o  equation (3) it will be assumed that t h e  forced response 

( /xo = minimum amplitude r a t io  xo/xst i s  maximum xst 

causes the r ea l  part  of equation ( 3 )  t o  vanish. 

a t  a frequency which ) 
This frequency i s  

which when substituted into the  imaginary par t  of equation ( 3 )  gives for  the 

amplitude of &mum response 

If the  damper operates under optimum conditions as given by equation (7) 

the maximum response equatfon becomes 

and the associated optimum gap distance i n  terms of s t a t i c  deflection i s  from 

equations (8) and (12) 



Equivalent expressions derived by Arnold (1957) and Warburton (1957) for 

m/y l  = 1 are 

and 

d 2 

(G)opt = t + 

On the basis of experimentally determined chain damper impedance data it 

appears that  for a conservative estimate of optimum damper performance one 

could assme 2% = 2.0 and - = 1.0. These values with equations (9) and 

(11) lead t o  the following expressions for maximum response and the maximum gap 

C me 
2mU 2m 

distance 

and 

It is interesting t o  note that i f  a value of e = 0.22 is  used i n  equa- 

t ion  (14), equation (16) is  obtained. 

It is  also informative t o  compare the optimum performance of chain dampers 

w i t h  t ha t  of equivalent l inear  viscous damping. The maximum response of a 

14 



l ight ly  damped structure with viscous damping i s  

Thus, by equating equations (16) and (18) it is  found tha t  a chain damper under 

best operating conditions is equivalent t o  a viscous damping r a t io  of 

CHAIN W E R  INSTALLATION ON AN EE(ECTI3D LAUNCH VEHICLE 

In order t o  evaluate the performance of chain dampers on an actual struc- 

ture,  an experimental damper instal la t ion was attached t o  a 70-foot-tall Jupiter 

vehicle a t  Wallops Island, Virginia. T h i s  surplus vehicle had been used pre- 

viously by Foughner and Duncan (1966) i n  an extensive research program t o  study 

the effects of ground wind loads on erected launch vehicles, and was therefore 

fu l ly  instrumented for  dynamic response measurements. 

The damper instal la t ion on the vehicle i s  shown i n  figure 10. A k-foot- 

wide band of 1/32-inch sheet metal, bent t o  form a series of ver t ica l  channels, 

was wrapped around the vehicle near the top. With the vehicle skin as an inner 

w a l l ,  f i f t y  s ix  2- by &-inch channels were formed. Half of these channels 

were divided by sheet-metal inser ts  which s p l i t  the 2- by &inch channel 

into t w o  2- by 2-inch channels giving a t o t a l  of 84 channels. 

long, 6-pound chain covered with a rubber sleeve was hung i n  each channel. 

These chains were the heaviest of the three chain configurations evaluated i n  

the impedance t e s t s  (3/8-inch l i nk  s ize ,  0.148 l b  per f t ) .  The t o t a l  damper- 

chain weight was about 700 pounds which i s  approximately 5 percent of the 

vehicle. weight without dampers. 

A @-inch- 

The fundamental natural cantilever bending 

15 



frequency of the vehicle alone i s  2.0 Hz which is about 3 times greater than the 

fundamental chain frequency %/? = 3.0 . A l s o ,  the clearance gaps between the 

chain and the channel walls i s  0.45 inch and 2.45 inches fo r  the 2-inch and 

4-inch channel sides, respectively. 

The effect  of chain dampers on free vibration response of the vehicle i n  

i t s  fundamental mode i s  as  shown in  figure 11. 

rithmic decrement of successive vibration cycles as a function of the vehicle 

displacement amplitude a t  the center of the damper. 

to r ies  from which the decrements were obtained are  also presentedin the Figure. 

Note t h a t  the damper has maximum effectiveness f o r  amplitudm between 0.075 

For Vibrations i n  the direction of the narrow channel dimension 

This figure presents the loga- 

The vibration time his- 

and 0.15. 

these amplitudes are equivalent t o  

viously indicated, f a l l s  within the damper s t ab i l i t y  boundary for  2-inpact-per- 

cycle motion (see f ig .  8 a t  w q = 3.0). 

channel dimension, however, the chains i n  the rectangular channel are ineffec- 

t i ve  since d/x, i s  always greater than 10.0. (The highest c r i t i c a l  d/% 

ra t io  obtained i n  the impedance t e s t  was 8.) 

low amplitudes the damper effectiveness i s  l o s t  because the 

a l l  chains has exceeded the c r i t i c a l  value f o r  which impacts a re  possible. 

extend effective damper operation over a broader range of amplitudes, one might 

use more variations i n  the gap distance or, as suggested by Reed and Duncan 

(1967), tapered channels. 

d/% rat ios  of 6.0 and 3.2 which, as pre- 

For motion paral le l  t o  the &-inch I 

Also, it is evident tha t  a t  very 

d/xo ra t io  for 

To 

CONCLUDING REMAFKS 

This paper investigates a simple concept of achieving damping in  a class of 

erected structures such as antennas, stacks, andtowers. It i s  shown that a 
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chain, covered with a rubber sleeve and suspended with freedom t o  impact 

against a ver t ica l  channel, i s  capable of absorbing significant energy associ- 

a tedwithtransverse oscil lations of the channel. 

i s t i c s  of such a damper are  determined experimentally i n  terms of mechanical 

impedance measurements. 

such parameters as length andmass o f t h e  chain, clearance gap distance, and 

amplitude and frequency of forced sinusoidal motian. 

be i n  reasonable agreement with a simplified theory which is derived i n  the 

Appendix of the paper on the  basis of a single-particle impact damper. 

The performance character- 

Experimental data a re  presentedto show the effects  of 

These data are  found t o  

In  an experiment t o  evaluate performance of this type damper on a rela- 

t ively large structure, chain dampers were instal led on a 70-foot-tall erected 

launch vehicle. It i s  shown tha t  the damper, which weighed about 'j percent of 

the vehicle w e i g b t ,  increased the damping of the structure by a factor of up 

t o  3. 

From resul ts  of thip generalized research study it is  fel t  tht the per- 

formance of hanging-chain impact dampers can be predictedwith accuracy suitable 

for  design purposes. 



IMPACT DAMPER ANALYSIS 

Derivation of Impedance Equations 

The idealized impact damper t o  be considered is  shown i n  figure 12. A 

f r ic t ionless  mass part ic le  mp 

clearance gap distance d. kt F ( t )  be the force required t o  drive the con- 

tainer sinusoidally a t  a prescribed amplitude + and frequency a, and le t  

y ( t )  be the absolute displacement of mp, It i s  assumed that twice per cycle, 

a t  equally spaced t i m e  intervals 3c/cu, the par t ic le  impacts against either end 

of the container. i n  the 

container di splacement equat i on 

is  free t o  osci l la te  i n  a container within a 

The t i m e  of impact i s  defined by the phase angle cp 

dt) = xo cos(& + q l )  

such tha t  impacts occur when the displacement i s  xo cos cp, xo cos(ql + z), etc. 

"he velocity-displacement o r  "phase-plane" diagram shown i n  figure l2(b) 

provides a convenient graphical representation of the combinedmotions of the 

container and the mass particle.  

displacement vector of each container w a l l  describes a c i rc le  of radius 

and whose center l i e s  on the x-axis a distance kd/2 from the origin. 

I n  this diagram the rotating velocity- 

xo 

Before and a f t e r  impact the particle moves a t  a constant velocity which is  

Immediately before impact represented i n  the phase plane by a horizontal l ine.  

a t  point A the velocity of the par t ic le  re la t ive t o  the container i s  x, - y,; 

immediately after impact it i s  

i t ies is  determined by the coefficient af rest i tut ion through the equation 

x+ - y+. The relationship between these veloc- 
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For symmetrical steady-state motion the part ic le  velocity af’ter b p a c t  is equal 

and opposite t o  its value before i q a c t  

Y+ -Y- 

A l s o ,  during impact it is  assumed tha t  the driving force F( t )  

maintaining the prescribed sinusoidalvelocity of the container 80 that  

is capable of 

2, = ii+ 

From equation (Al) the container velocity a t  impact A (t = 0) is 

Thus, with equations (A3) through (A?) substituted into equa;tion (A2) the veloc- 

i t y  of the par t ic le  immediately a f te r  impact a t  A is found t o  be 

Similarly the par t ic le  velocity immediately following the second impact, which 

occurs a t  B one-half 831 oscil lation cycle la te r ,  i s  

In the t i m e  intervhl a/& between impacts A and B the par t ic le  travels 

from one end of the container t o  the other through a distance 

gration of the relat ive velocity 

6. Worn inte- 

d = 1LX’& ($+ - i ( t ) )d t  



and use of equations ( A I )  and (A6) this distance i s  

I l + e  - =  n -sincp - 2 cos cp xo 1 1 - e  

This equation defines the gap distance as  a flmction of e and .rp. Implicit 

i n  t he  equation is the assumption tha t  upon impact the par t ic le  immediately 

rebounds from one side of the container and makes no Further contact with the 

container un t i l  reaching tb opposfte side. When e approaches zero the 

particle may experience multiple impacts against the same w a l l  or remain i n  

contact with the wall mer a significant part  of the cycle. 

w i l l  be treated separately la te r  i n  the Appendix. 

These special cases 

Next, consider the driving force F ( t ) .  With the assunrpfion that the con- 

ta iner  mass i s  negligible, F ( t )  i s  an impulse which exactly counteracts the 

impact reaction force of the mass on the container a t  the instant of collision. 

From momentum considerations the impulse is  

and 

a t  B 

a t A  i 
F(0) At = -%$+(O) 

lim A h 0  

F(R/u) A t  = -~ID$+(K/u) 
lim A M  

F ( t )  At  = 0 
l i m  A h 0  J elsewhere 

In  order t o  derive impact damper impedance pammeters Ce and m, as  

expressed i n  the equation 

( A m  
.. 

F ( t )  = mex + ce2 

consider the following integrations over one cycle of oscillation 

20 



11 = k2R’a F( t )% dt 

and 

F(t)g d t  

Note tha t  11 is the work per cycle done by F ( t )  on the damper. 

With the assumed form of F ( t )  as given by equation ( A l O ) ,  together with 

time derivatives of equation ( A l ) ,  these integrations produce 

ana 
I2 = lrmedxo 2 

From equations ( A 6 ) ,  ( A 7 ) ,  and (Ag)  the following equivalent expressions 

f o r  I1 and I2 are obtained: 

and 

I2 = $dxo(K)cos l + e  cp sin cp 

Thus, eliminating I1 i n  equations ( A l 3 )  and ( A l 5 )  we obtain 

- Ce - 4 1 + e  - -(-)sin% 
m p  R 1 - e  

and similarly eliminating I2 i n  equations (A14) and (~16) 
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These expressions f o r  the equivalent viscous damping and effective mass, 

together with equations (A8) ,  which relates  d/xo t o  cp, define the  impact 

damper impedance for  the previously stated assumptions regarding rebound condi- 

tions. In  relating these equations t o  the chain damper, the m a s s  9 i s  

replaced by the t o t a l  chain mass 

along the full length of the chain. Equations (Al'j') and (~18) with e as a 

parameter are plotted a s  a function of 

Zm under the assumption that impact occurs 

d/xo i n  figure 5 .  

A s  mentioned ear l ie r  when e + 0 the par t ic le  does not rebound a f t e r  

impact. For the condition e = 0, rather than following the rectangular path 

shown i n  figure 12(b), the par t ic le  remains i n  contact w i t h  the container af ter  

impact a t  A u n t i l  the container accelerates t o  i t s  maximum velocity. It then 

separates from the container with an absolute velocity of -axo which i s  

retained u n t i l  impact a t  B on the opposite side. The process i s  then repeated. 

To account for  conditions of zero e las t ic  rebound. (e  = 0) ,  it i s  necessary 

to  modify the preceding analysis as follows: The farce term F( t )  will include, 

i n  addition t o  the impulse due t o  impact, an iner t ia  force 

t ional  force acts from the t i m e  of impact u n t i l  the particle separates from the 

mpz. This addi- 

container wall a t  the time changes sign. A l s o ,  the  velocity of the particle 

prior t o  impact (i.e,,  1g-I = uw0) differs from that derived from equation (A2).  

With these modifications applied t o  the foregoing analysis, the impedance equa- 

tions for  e = 0 are found t o  be 

where 

22 
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It should be noted tha t  these equations are applicable for  -a/2 5 cp 5 x/2; 

for  cp values beyond this range the container accelerates away from the  par t ic le  

immediately a f te r  impact, therefore, the previously developed impedance equations 

are appropriate. In  figure 5 the curves for  e = 0 were determined from both 

se t s  of equations with the t ransi t ion from one set t o  the other occurring a t  

St  ab i l i ty  Boundaries 

The region of steady two-impact-per-cycle motion as a function of d/xo 

and e i s  shown i n  figure 7. The boundary on the  right represents the maximum 

allowable value of 

value. To determine the upper l i m i t  on d/xo we maximize equations (A8) with 

respect t o  cp 

d/xo and the boundary on the l e f t ,  the m i n i m u m  allowable 

from which the cjri t icalvalue of cp i s  

The minimum allowable d/xo f o r  two-impact-per-cycle motion may be found 

as follows: With reference t o  figure 12(b) l e t  E be the separation distance 

between the par t ic le  and the container immediately Zollowing an impact3 a t  

point A. If t h i s  distance becomes zero as  the container accelerates t o  maximum 

velocity, a second impact w i l l  occur. It can be seen that  t h e  container reaches 

23 



maximum velocity at 

separation distance 

E = 

From equations (A5) 

n/2 - cp 
w ($+ - ;+)at 

the time seconds a f t e r  impact a t  A. Thus, the 

a t  this t i m e  is 

and (A6) 

Therefore, E = 0 when 

(1 + e)(n/2 - c p )  = (1 - e)- 
s in  Q, 

or 
c o t 9  - - + c p  n 

c o t c p + - - c p  n (A22 1 2 

2 

e =  

This equation in  combination with equation (A8) for 

boundary plotted i n  figure 7. 

d/x, then defines the l e f t  
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Figure 1.- Chain damper configuration studied. 
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Figure 3. - Mechanical impedance t e s t  apparatus and data-reduction procedure. 
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Figure 5.- Theoretical impact damper impedance functions. 
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Figure 10.- Chain damper installation on Jupiter launch vehicle. 
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(a) Model of system. 

(b) Phase plane representation of particle and container motions for e * 0. 
Figure 12. - Idealized single-particle impact damper. 

NASA-Langley, 1967 


